Experimentally Verified Flow Distribution Model for a Composite Modelling System
Dominika Babička Fialová and
Zdeněk Jegla
Additional contact information
Dominika Babička Fialová: Faculty of Mechanical Engineering, Institute of Process Engineering, Brno University of Technology, 61669 Brno, Czech Republic
Zdeněk Jegla: Faculty of Mechanical Engineering, Institute of Process Engineering, Brno University of Technology, 61669 Brno, Czech Republic
Energies, 2021, vol. 14, issue 6, 1-24
Abstract:
Requirements of modern process and power technologies for compact and highly efficient equipment for transferring large heat fluxes lead to designing these apparatuses as dense parallel flow systems, ranging from conventional to minichannel dimensions according to the specific industrial application. To avoid operating issues in such complex equipment, it is vital to identify not only the local distribution of heat flux in individual parts of the heat transfer surface but also the uniformity of fluid flow distribution inside individual parallel channels of the flow system. A composite modelling system is currently being developed for accurate design of such complex heat transfer equipment. The modeling approach requires a flow distribution model enabling to yield accurate-enough predictions in reasonable time frames. The paper presents the results of complex experimental and modeling investigation of fluid flow distribution in dividing headers of tubular-type equipment. Different modeling approaches were examined on a set of header geometries. Predictions obtained via analytical and numerical models were validated using data from the experiments conducted on additively manufactured header samples. Two case studies employing parallel flow systems (mini-scale systems and a conventional-size heat exchanger) demonstrated the applicability of the distribution model and the accuracy of the composite modelling system.
Keywords: flow distribution; process and power industry; minichannel; minigap; steam superheater; analytical model; composite modelling system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/6/1778/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/6/1778/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:6:p:1778-:d:522729
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().