Adaptive Tolerant State Estimation under Model Uncertainty in Power Systems
Ruizi Ma
Additional contact information
Ruizi Ma: College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Energies, 2021, vol. 14, issue 8, 1-15
Abstract:
In this paper an adaptive tolerant estimator using singular value decomposition is proposed for a distribution network under model uncertainty in power systems. The adaptive tolerant estimator was designed with adjusted parameters and adjusted weights to overcome the limitations of model uncertainty. The estimator that reduces the measurement errors is adaptive to fast parameter changes in complicated environments. The singular value decomposition method was combined into the state estimator, which extended the over-determined cases to under-determined cases under model uncertainty. The performance of the tolerant estimator was compared with the conventional adaptive estimator, and the tolerant estimator showed accurate estimations against model uncertainty in complicated measurement environments.
Keywords: singular value decomposition; power systems; state estimator; adaptive; under-determined (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2111/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2111/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2111-:d:533463
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().