EconPapers    
Economics at your fingertips  
 

The Hydraulically Controlled Oscillating Piston Converter

Rudolf Scheidl
Additional contact information
Rudolf Scheidl: Institute of Machine Design and Hydraulic Drives, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria

Energies, 2021, vol. 14, issue 8, 1-17

Abstract: One way to realize inertia in energy saving hydraulic switching converters is a mechanical oscillator connected to a piston. Its two basic advantages over the use of fluid in an inductance pipe are higher compactness and a better decoupling of inductance and capacitance; these are opposed by a more complex valve system, which raises costs if electric control is applied. This paper presents and studies an oscillating mass converter with pure hydraulic control. It features a pressure control function and constitutes a step-up converter. A simple model is established to elucidate the basic properties of the function principle under idealized conditions. The complete system with the hydraulic control concept is studied by an elaborate dynamical model. It is shown that the converter is able to operate in the intended way under the conditions of the mathematical model. A potential application for a load sensing type meter out control of a cylinder drive is sketched.

Keywords: switched inertance control; oscillating mass converter; digital hydraulics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2156/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2156/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2156-:d:535049

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2156-:d:535049