Nonequilibrium Entropy Conservation and the Transport Equations of Mass, Momentum, and Energy
Michael H. Peters
Additional contact information
Michael H. Peters: Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main St., Richmond, VA 23284, USA
Energies, 2021, vol. 14, issue 8, 1-8
Abstract:
Nonequilibrium statistical mechanics or molecular theory has put the transport equations of mass, momentum and energy on a firm or rigorous theoretical foundation that has played a critical role in their use and applications. Here, it is shown that those methods can be extended to nonequilibrium entropy conservation. As already known, the “closure” of the transport equations leads to the theory underlying the phenomenological laws, including Fick’s Law of Diffusion, Newton’s Law of Viscosity, and Fourier’s Law of Heat. In the case of entropy, closure leads to the relationship of entropy flux to heat as well as the Second Law or the necessity of positive entropy generation. It is further demonstrated how the complete set of transport equations, including entropy, can be simplified under physically restrictive assumptions, such as reversible flows and local equilibrium flows. This analysis, in general, yields a complete, rigorous set of transport equations for use in applications. Finally, it is also shown how this basis set of transport equations can be transformed to a new set of nonequilibrium thermodynamic functions, such as the nonequilibrium Gibbs’ transport equation derived here, which may have additional practical utility.
Keywords: theory of entropy conservation; energy efficiency; energy applications; second law (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2196/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2196/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2196-:d:536228
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().