Improved Self-Sensing Speed Control of IPMSM Drive Based on Cascaded Nonlinear Control
Muhammad Usama and
Jaehong Kim
Additional contact information
Muhammad Usama: Department of Electrical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea
Jaehong Kim: Department of Electrical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea
Energies, 2021, vol. 14, issue 8, 1-21
Abstract:
This paper presents a nonlinear cascaded control design that has been developed to (1) improve the self-sensing speed control performance of an interior permanent magnet synchronous motor (IPMSM) drive by reducing its speed and torque ripples and its phase current harmonic distortion and (2) attain the maximum torque while utilizing the minimum drive current. The nonlinear cascaded control system consists of two nonlinear controls for the speed and current control loop. A fuzzy logic controller (FLC) is employed for the outer speed control loop to regulate the rotor shaft speed. Model predictive current control (MPCC) is utilized for the inner current control loop to regulate the drive phase currents. The nonlinear equation for the dq reference current is derived to implement the maximum torque per armature (MTPA) control to achieve the maximum torque while using the minimum current values. The model reference adaptive system (MRAS) was employed for the speed self-sensing mechanism. The self-sensing speed control performance of the IPMSM motor drive was compared with that of the traditional cascaded control schemes. The stability of the sensorless mechanism was studied using the pole placement method. The proposed nonlinear cascaded control was verified based on the simulation results. The robustness of the control design was ensured under various loads and in a wide speed range. The dynamic performance of the motor drive is improved while circumventing the need to tune the proportional-integral (PI) controller. The self-sensing speed control performance of the IPMSM drive was enhanced significantly by the designed cascaded control model.
Keywords: self-sensing speed control; maximum torque per ampere (MTPA); fuzzy logic control (FLC); model predictive current control (MPCC); interior permanent magent synchronous motor (IPMSM); model reference adaptive system (MRAS) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2205/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2205/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2205-:d:536805
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().