Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods
Yinjiao Su,
Xuan Liu,
Yang Teng and
Kai Zhang
Additional contact information
Yinjiao Su: Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
Xuan Liu: Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
Yang Teng: Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
Kai Zhang: Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
Energies, 2021, vol. 14, issue 9, 1-20
Abstract:
Coal combustion is an anthropogenic source of mercury (Hg) emissions to the atmosphere. The strong toxicity and bioaccumulation potential have prompted attention to the control of mercury emissions. Pyrolysis has been regarded as an efficient Hg removal technology before coal combustion and other utilization processes. In this work, the Hg speciation in coal and its thermal stability were investigated by combined sequential chemical extraction and temperature programmed decomposition methods; the effect of coal rank on Hg speciation distribution and Hg release characteristics were clarified based on the weight loss of coal; the amount of Hg released; and the emission of sulfur-containing gases during coal pyrolysis. Five species of mercury were determined in this study: exchangeable Hg (F1), carbonate + sulfate + oxide bound Hg (F2), silicate + aluminosilicate bound Hg (F3), sulfide bound Hg (F4), and residual Hg (F5), which are quite distinct in different rank coals. Generally, Hg enriched in carbonates, sulfates, and oxides might migrate to sulfides with the transformation of minerals during the coalification process. The order of thermal stability of different Hg speciation in coal is F1 < F5 < F2 < F4 < F3. Meanwhile, the release of Hg is accompanied with sulfur gases during coal pyrolysis, which is heavily dependent on the coal rank.
Keywords: distribution of Hg speciation; coal rank; thermal release (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/9/2361/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/9/2361/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:9:p:2361-:d:540825
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().