EconPapers    
Economics at your fingertips  
 

Impact of Series and Parallel Connection of Macro Fiber Composite Patches in Piezoelectric Harvester on Energy Storage

Dariusz Grzybek and Piotr Micek
Additional contact information
Dariusz Grzybek: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Piotr Micek: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Energies, 2021, vol. 14, issue 9, 1-13

Abstract: A beam containing a piezoelectric layer or layers is used for piezoelectric harvesting from various processes. The structure of the beam is made by gluing the piezoelectric material on one side (unimorph) or both sides (bimorph) of a carrying substrate. Two piezoelectric layers, glued on both sides of the substrate, may be electrically parallel or series connected. This paper presents an experimental analysis of the impact of parallel and series connections of two Macro Fiber Composite (MFC) MFC patches in a bimorph on the charging of a capacitor. In experiments, the effective charging process of the capacitor was obtained both for parallel and series connection of two MFC patches. The bimorph with a parallel connection generated a larger capacitor charging power than the bimorph with a series connection in the range of voltage across the capacitor from 1 to 18 V. However, the bimorph with a series connection was more effective than a parallel connection for voltage across the charged capacitor from 18 to 20 V. The maximum capacitor charging power generated by the bimorph, in which two MFC patches were parallel connected, was 1.8 times larger than that generated by the bimorph with a series connection and was 3.3 times larger than that generated by a unimorph with one MFC patch. The impact of level of voltage across the capacitor on its discharging process has a significant meaning for the ratio of maximum power between bimorphs and between the bimorph and unimorph.

Keywords: piezoelectric energy harvesting; Macro Fiber Composite; parallel connection; series connection; energy storage; bimorph; unimorph (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/9/2379/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/9/2379/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:9:p:2379-:d:541430

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2379-:d:541430