EconPapers    
Economics at your fingertips  
 

Nanomaterials in Protection of Buildings and Infrastructure Elements in Highly Aggressive Marine Environments

Jose Maria del Campo and Vicente Negro
Additional contact information
Jose Maria del Campo: Department of Civil Engineering: Construction, Infrastructures and Transportation, Civil Engineering School, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Vicente Negro: Grupo de Investigación Medio Marino, Costero y Portuario, y Otras Áreas Sensibles, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Energies, 2021, vol. 14, issue 9, 1-13

Abstract: The 2030 Agenda and Sustainable Development Goals (SDG) are both an engineering challenge and an opportunity. Clean energy (SDG 7), sustainable cities and communities (SDG 11), and climate action (SDG 13) represent an effort to manage, plan, and develop our buildings and infrastructure. The purpose of this study is to contribute to this challenge by analysing nanomaterials in marine environment structures, both urban and maritime. To do this, we have analyzed different regulations of concrete properties in various countries, defining the characteristics of the cement, coating, water/cement rating, and chloride effect; the difference in durability based on conventional reinforcements and nanomaterials; and use on highly sensitive elements, buildings in marine environments, rubble mound structures, crown walls, and gravity-based foundations for wind power facilities. Division into overhead, underwater, or splash zones entails the use of epoxy resins or silica fume matrices in percentages far below ten percent. Using the most exposed and unfavorable structures, conclusions of application to buildings are established based on the recommendations in maritime engineering most exposed to the actions of the waves. The study concludes with recommendations regarding the durability, increased lifespan, and use of new materials in infrastructure elements in highly adverse marine environments.

Keywords: SDG; building; wind energy; crown wall; nanomaterial; silica fume; splash zone (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/9/2588/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/9/2588/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:9:p:2588-:d:547512

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2588-:d:547512