EconPapers    
Economics at your fingertips  
 

Fusion of Improved Sparrow Search Algorithm and Long Short-Term Memory Neural Network Application in Load Forecasting

Gwo-Ching Liao
Additional contact information
Gwo-Ching Liao: Department of Electrical Engineering, Fortune Institute of Technology, Kaohsiung 83158, Taiwan

Energies, 2021, vol. 15, issue 1, 1-18

Abstract: Load forecasting (LF) is essential in enabling modern power systems’ safety and economical transportation and energy management systems. The dynamic balance between power generation and load in the optimization of power systems is receiving increasing attention. The intellectual development of information in the power industry and the data acquisition system of the smart grid provides a vast data source for pessimistic load forecasting, and it is of great significance in mining the information behind power data. An accurate short-term load forecasting can guarantee a system’s safe and reliable operation, improve the utilization rate of power generation, and avoid the waste of power resources. In this paper, the load forecasting model by applying a fusion of Improved Sparrow Search Algorithm and Long Short-Term Memory Neural Network (ILSTM-NN), and then establish short-term load forecasting using this novel model. Sparrow Search Algorithm is a novel swarm intelligence optimization algorithm that simulates sparrow foraging predatory behavior. It is used to optimize the parameters (such as weight, bias, etc.) of the ILSTM-NN. The results of the actual examples are used to prove the accuracy of load forecasting. It can improve (decrease) the MAPE by about 20% to 50% and RMSE by about 44.1% to 52.1%. Its ability to improve load forecasting error values is tremendous, so it is very suitable for promoting a domestic power system.

Keywords: energy management systems; long short-term memory neural network; load forecasting; improved sparrow search algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/130/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/130/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2021:i:1:p:130-:d:710909

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:130-:d:710909