EconPapers    
Economics at your fingertips  
 

Design Optimization of a Dual-Bleeding Recirculation Channel to Enhance Operating Stability of a Transonic Axial Compressor

Tien-Dung Vuong and Kwang-Yong Kim
Additional contact information
Tien-Dung Vuong: Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
Kwang-Yong Kim: Department of Mechanical Engineering, Inha University, Incheon 22212, Korea

Energies, 2021, vol. 15, issue 1, 1-17

Abstract: The present work performed a comprehensive investigation to find the effects of a dual-bleeding port recirculation channel on the aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 37, and optimized the channel’s configuration to enhance the operating stability of the compressor. The compressor’s performance was examined using three parameters: The stall margin, adiabatic efficiency, and pressure ratio. Steady-state three-dimensional Reynolds-averaged Navier–Stokes analyses were performed to find the flow field and aerodynamic performance. The results showed that the addition of a bleeding channel increased the recirculation channel’s stabilizing effect compared to the single-bleeding channel. Three design variables were selected for optimization through a parametric study, which was carried out to examine the influences of six geometric parameters on the channel’s effectiveness. Surrogate-based design optimization was performed using the particle swarm optimization algorithm coupled with a surrogate model based on the radial basis neural network. The optimal design was found to increase the stall margin by 51.36% compared to the case without the recirculation channel with only 0.55% and 0.28% reductions in the peak adiabatic efficiency and maximum pressure ratio, respectively.

Keywords: axial compressor; recirculation channel; RANS analysis; optimization; stall margin; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/159/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/159/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2021:i:1:p:159-:d:712066

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:159-:d:712066