Study of the Critical Pore Radius That Results in Critical Gas Saturation during Methane Hydrate Dissociation at the Single-Pore Scale: Analytical Solutions for Small Pores and Potential Implications to Methane Production from Geological Media
Ioannis Nikolaos Tsimpanogiannis,
Emmanuel Stamatakis and
Athanasios Konstantinos Stubos
Additional contact information
Ioannis Nikolaos Tsimpanogiannis: Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), Thermi, 57001 Thessaloniki, Greece
Emmanuel Stamatakis: Institute of Geoenergy/Foundation for Research and Technology—Hellas (IG/FORTH), University Campus, Akrotiri, 73100 Chania, Greece
Athanasios Konstantinos Stubos: Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece
Energies, 2021, vol. 15, issue 1, 1-21
Abstract:
We examine the critical pore radius that results in critical gas saturation during pure methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain critical values for pore sizes above which the production of methane gas is possible. Results shown in the current study correspond to the case when the depression of the dissociation temperature (due to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered. The temperature shift due to confinement in porous media is estimated through the well-known Gibbs-Thompson equation. The particular results are of interest to geological media and particularly in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation temperature on the calculated values of the critical pore sizes for gas production is limited to less than 10% when compared to our earlier study where the porous media effects have been ignored.
Keywords: gas hydrates; hydrate equilibrium; porous medium; critical gas saturation; analytical solutions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/210/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/210/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2021:i:1:p:210-:d:713659
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().