EconPapers    
Economics at your fingertips  
 

The Review of Electromagnetic Field Modeling Methods for Permanent-Magnet Linear Motors

Xinmei Wang, Yifei Wang and Tao Wu
Additional contact information
Xinmei Wang: School of Automation, China University of Geosciences, Wuhan 430074, China
Yifei Wang: School of Automation, China University of Geosciences, Wuhan 430074, China
Tao Wu: School of Automation, China University of Geosciences, Wuhan 430074, China

Energies, 2022, vol. 15, issue 10, 1-18

Abstract: Permanent-magnet linear motors (PMLMs) are widely used in various fields of industrial production, and the optimization design of the PMLM is increasingly attracting attention in order to improve the comprehensive performance of the motor. The primary problem of PMLM optimization design is the establishment of a motor model, and this paper summarizes the modeling of the PMLM electromagnetic field. First, PMLM parametric modeling methods (model-driven methods) such as the equivalent circuit method, analytical method, and finite element method, are introduced, and then non-parametric modeling methods (data-driven methods) such as the surrogate model and machine learning are introduced. Non-parametric modeling methods have the characteristics of higher accuracy and faster computation, and are the mainstream approach to motor modeling at present. However, surrogate models and traditional machine learning models such as support vector machine (SVM) and extreme learning machine (ELM) approaches have shortcomings in dealing with the high-dimensional data of motors, and some machine learning methods such as random forest (RF) require a large number of samples to obtain better modeling accuracy. Considering the modeling problem in the case of the high-dimensional electromagnetic field of the motor under the condition of a limited number of samples, this paper introduces the generative adversarial network (GAN) model and the application of the GAN in the electromagnetic field modeling of PMLM, and compares it with the mainstream machine learning models. Finally, the development of motor modeling that combines model-driven and data-driven methods is proposed.

Keywords: permanent-magnet linear motor; parametric modeling; non-parametric modeling; surrogate model; machine learning; GAN (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3595/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3595/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3595-:d:815495

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3595-:d:815495