Real Time Hardware-in-Loop Implementation of LLC Resonant Converter at Worst Operating Point Based on Time Domain Analysis
Kiran Kumar Geddam and
Elangovan Devaraj
Additional contact information
Kiran Kumar Geddam: School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
Elangovan Devaraj: TIFAC-CORE, School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
Energies, 2022, vol. 15, issue 10, 1-19
Abstract:
The inductor inductor capacitor (LLC) resonant topology has become more popular for deployment in high power density and high-efficiency power converter applications due to its ability to maintain zero voltage switching (ZVS) over a wider input voltage range. Due to their ease of operation and acceptable accuracy, frequency domain-related analytical methods using fundamental harmonic approximation (FHA) have been frequently utilized for resonant converters. However, when the switching frequency is far from the resonant frequency, the circuit currents contain a large number of harmonics, which cannot be ignored. Therefore, the FHA is incapable of guiding the design when the LLC converter is used to operate in a wide input voltage range applications due to its inaccuracy. As a result, a precise LLC converter model is needed. Time domain analysis is a precise analytical approach for obtaining converter attributes, which supports in the optimal sizing of LLC converters. This work strives to give a precise and an approximation-free time domain analysis for the exact modeling of high-frequency resonant converters. A complete mathematical analysis for an LLC resonant converter operating in discontinuous conduction mode (DCM)—i.e., the boost mode of operation below resonance—is presented in this paper. The proposed technique can confirm that the converter operates in PO mode throughout its working range; in addition, for primary MOSFET switches, it guarantees the ZVS and zero current switching (ZCS) for the secondary rectifier. As a function of frequency, load, and other circuit parameters, closed-form solutions are developed for the converter’s tank root mean square (RMS) current, peak stress, tank capacitor voltage, voltage gain, and zero voltage switching angle. Finally, an 8 KW LLC resonant converter is built in the hardware-in-loop (HIL) testing method on RT-LAB OP-5700 to endorse the theoretical study.
Keywords: HIL; LLC resonant converter (LLC-RC); soft switching; time domain analysis; ZVS; ZCS (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3634/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3634/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3634-:d:816538
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().