User-Centric BIM-Based Framework for HVAC Root-Cause Detection
Hamidreza Alavi and
Nuria Forcada
Additional contact information
Hamidreza Alavi: Group of Construction Research and Innovation (GRIC), Department of Project and Construction Engineering (DPCE), Universitat Politècnica de Catalunya (UPC), Colom, 11, Ed. TR5, 08222 Terrassa, Barcelona, Spain
Nuria Forcada: Group of Construction Research and Innovation (GRIC), Department of Project and Construction Engineering (DPCE), Universitat Politècnica de Catalunya (UPC), Colom, 11, Ed. TR5, 08222 Terrassa, Barcelona, Spain
Energies, 2022, vol. 15, issue 10, 1-13
Abstract:
In the building operation phase, the Heating, Ventilation, and Air-Conditioning (HVAC) equipment are the main contributors to excessive energy consumption unless proper design and maintenance is carried out. Moreover, HVAC problems might have an impact on occupants’ discomfort in thermal comfort. Hence, the identification of the root cause of HVAC problems is imperative for facility managers to plan preventive and corrective maintenance actions. However, due to the complex interaction between various equipment and the lack of data integration among Facility Management (FM) systems, they fail to provide necessary information to identify the root cause of HVAC problems. Building Information Modelling (BIM) is a potential solution for maintenance activities to address the challenges of information reliability and interoperability. Therefore, this paper presents a novel conceptual model and user-centric framework to determine the causes of HVAC problems implemented in BIM for its visualization. CMMS and BMS data were integrated into BIM and utilized by the framework to analyze the root cause of HVAC problems. A case study in a university building was used to demonstrate the applicability of the approach. This framework assists the FM team to determine the most probable cause of an HVAC problem, reducing the time to detect equipment faults, and providing potential actions to solve them.
Keywords: building information modelling; maintenance management; operation and maintenance; HVAC system; facility management; decision making; visualization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3674/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3674/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3674-:d:817676
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().