Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China
Junlong Zhang,
Youbin He,
Yuan Zhang,
Weifeng Li and
Junjie Zhang
Additional contact information
Junlong Zhang: School of Geosciences, Yangtze University, Wuhan 430100, China
Youbin He: School of Geosciences, Yangtze University, Wuhan 430100, China
Yuan Zhang: Research Institute of Petroleum Exploration and Development, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
Weifeng Li: School of Geosciences, Yangtze University, Wuhan 430100, China
Junjie Zhang: Global Research, RBC Capital Markets, Toronto, ON M5J 2J5, Canada
Energies, 2022, vol. 15, issue 10, 1-15
Abstract:
The identification of underground formation lithology is fundamental in reservoir characterization during petroleum exploration. With the increasing availability and diversity of well-logging data, automated interpretation of well-logging data is in great demand for more efficient and reliable decision making for geologists and geophysicists. This study benchmarked the performances of an array of machine learning models, from linear and nonlinear individual classifiers to ensemble methods, on the task of lithology identification. Cross-validation and Bayesian optimization were utilized to optimize the hyperparameters of different models and performances were evaluated based on the metrics of accuracy—the area under the receiver operating characteristic curve (AUC), precision, recall, and F1-score. The dataset of the study consists of well-logging data acquired from the Baikouquan formation in the Mahu Sag of the Junggar Basin, China, including 4156 labeled data points with 9 well-logging variables. Results exhibit that ensemble methods (XGBoost and RF) outperform the other two categories of machine learning methods by a material margin. Within the ensemble methods, XGBoost has the best performance, achieving an overall accuracy of 0.882 and AUC of 0.947 in classifying mudstone, sandstone, and sandy conglomerate. Among the three lithology classes, sandy conglomerate, as in the potential reservoirs in the study area, can be best distinguished with accuracy of 97%, precision of 0.888, and recall of 0.969, suggesting the XGBoost model as a strong candidate machine learning model for more efficient and accurate lithology identification and reservoir quantification for geologists.
Keywords: machine learning; supervised classification; lithology identification; well-logging; ensemble methods; gradient-boosted decision trees (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3675/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3675/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3675-:d:817721
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().