Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy
Habib Benbouhenni,
Zinelaabidine Boudjema,
Nicu Bizon,
Phatiphat Thounthong and
Noureddine Takorabet
Additional contact information
Habib Benbouhenni: Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, 34481742 Istanbul, Turkey
Zinelaabidine Boudjema: Laboratoire Génie Électrique et Energies Renouvelables (LGEER), Department of Electrical Engineering, Hassiba Benbouali University of Chlef, Chlef 02000, Algeria
Nicu Bizon: Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
Phatiphat Thounthong: Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
Noureddine Takorabet: Group of Research in Electrical Engineering of Nancy (GREEN), University of Lorraine-GREEN, F-54000 Nancy, France
Energies, 2022, vol. 15, issue 10, 1-25
Abstract:
A robust and improved control scheme of a variable speed multi-rotor wind turbine (MRWT) system with a doubly fed asynchronous generator (DFAG) is displayed in this work. In order to improve the performances and effectiveness of the traditional direct power control (DPC) strategy of the DFAG, a new kind of sliding mode controller (SMC) called modified SMC (MSMC) is proposed. The most important advantage of the DPC-MSMC strategy is to reduce the power ripples and improve the quality of the currents provided to the grid. In addition, to control the rotor inverter, a pulse width modulation (PWM) technique is used. The proposed DPC-MSMC strategy was modeled and simulated using MATLAB/Simulink software. The simulation results showed that the ripples in stator currents, active and reactive powers and torque were considerably reduced for the proposed DPC-MSMC strategy compared to the traditional DPC. Additionally, the proposed DPC-MSMC method works excellently to reduce the total harmonic distortion (THD) of the stator current in the case of variable wind speed. On the other hand, a robustness test against parametric variations showed and confirmed the robustness of the proposed technique compared to the classical method.
Keywords: doubly fed asynchronous generator; variable-speed multi-rotor wind turbine system; direct power control; modified SMC technique; total harmonic distortion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3689/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3689/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3689-:d:818176
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().