EconPapers    
Economics at your fingertips  
 

Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy

Habib Benbouhenni, Zinelaabidine Boudjema, Nicu Bizon, Phatiphat Thounthong and Noureddine Takorabet
Additional contact information
Habib Benbouhenni: Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, 34481742 Istanbul, Turkey
Zinelaabidine Boudjema: Laboratoire Génie Électrique et Energies Renouvelables (LGEER), Department of Electrical Engineering, Hassiba Benbouali University of Chlef, Chlef 02000, Algeria
Nicu Bizon: Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
Phatiphat Thounthong: Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
Noureddine Takorabet: Group of Research in Electrical Engineering of Nancy (GREEN), University of Lorraine-GREEN, F-54000 Nancy, France

Energies, 2022, vol. 15, issue 10, 1-25

Abstract: A robust and improved control scheme of a variable speed multi-rotor wind turbine (MRWT) system with a doubly fed asynchronous generator (DFAG) is displayed in this work. In order to improve the performances and effectiveness of the traditional direct power control (DPC) strategy of the DFAG, a new kind of sliding mode controller (SMC) called modified SMC (MSMC) is proposed. The most important advantage of the DPC-MSMC strategy is to reduce the power ripples and improve the quality of the currents provided to the grid. In addition, to control the rotor inverter, a pulse width modulation (PWM) technique is used. The proposed DPC-MSMC strategy was modeled and simulated using MATLAB/Simulink software. The simulation results showed that the ripples in stator currents, active and reactive powers and torque were considerably reduced for the proposed DPC-MSMC strategy compared to the traditional DPC. Additionally, the proposed DPC-MSMC method works excellently to reduce the total harmonic distortion (THD) of the stator current in the case of variable wind speed. On the other hand, a robustness test against parametric variations showed and confirmed the robustness of the proposed technique compared to the classical method.

Keywords: doubly fed asynchronous generator; variable-speed multi-rotor wind turbine system; direct power control; modified SMC technique; total harmonic distortion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3689/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3689/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3689-:d:818176

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3689-:d:818176