Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building
Piotr Michalak
Additional contact information
Piotr Michalak: Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Energies, 2022, vol. 15, issue 10, 1-19
Abstract:
Costs of cooling installations cause them to be very rarely used in residential buildings in countries located in heating-dominated climates, like Poland. Hence, there arises the need to assess indoor thermal comfort during summer and to indicate ways to reduce possible overheating. This paper presents an attempt to use the thermal network model of the building zone of EN ISO 13790 to assess indoor operative temperature during four warm months from June to September. The model of the naturally ventilated single-family residential building located in central Poland was used. Performed calculations for the base case resulted in 38 and 63 days within the comfort zone at 80% acceptance level in a total of 122 days in the analyzed period for EN 15251 and ASHRAE standards, respectively. Use of external shading on windows and the roof with lower solar absorptance resulted in 46 and 70 days with acceptable conditions, respectively. Further application of night ventilation resulted in the 38 and 63 days, respectively. From the considered solutions in Polish climate conditions, windows shading seems to be the most efficient solution when controlling indoor comfort in residential buildings with no cooling system. A comparison of hourly operative temperature from that model with the detailed simulation in EnergyPlus showed a strong correlation with R 2 = 0.934.
Keywords: operative temperature; EN 15251; EN 16798-1; ASHRAE 55; comfort zone; thermal network model; 5R1C; thermal comfort; EN ISO 13790; EnergyPlus (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3709/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3709/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3709-:d:818754
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().