Swiveling Magnetization for Anisotropic Magnets for Variable Flux Spoke-Type Permanent Magnet Motor Applied to Electric Vehicles
Yin-Hui Lee and
Min-Fu Hsieh
Additional contact information
Yin-Hui Lee: Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
Min-Fu Hsieh: Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
Energies, 2022, vol. 15, issue 10, 1-20
Abstract:
This paper investigates the application of anisotropic low-coercive force (LCF) magnets to a novel variable-flux spoke-type permanent magnet synchronous motor (VFS-PMSM) for electrical vehicles with a wide speed range. In the VFS-PMSM, flux is regulated by swiveling the magnetization of the anisotropic LCF magnets instead of directly magnetizing or demagnetizing them. The previously proposed VFS-PMSM uses only isotropic LCF magnets for easily swiveling the magnetic pole direction, resulting in lower torque density. The challenge thus lies in the feasibility to swivel the magnetic pole direction of the anisotropic LCF magnet, and the impact of the different magnetization strengths of the anisotropic magnets on the motor performance. This paper first studies the feasibility to swivel the magnetization direction of anisotropic LCF magnets through experiments. It is confirmed that the magnetization direction can be successfully swiveled by 90 degrees with a reduced external magnetizing field. Then, two VFS-PMSM topologies and various rotor configurations are compared in terms of key performance indices to determine critical sizing factors for performance enhancement. Finite element analysis is used for simulations. In comparison with the VFS-PMSM equipped with isotropic LCF magnets, the maximum torque of the proposed topology can be improved for the same flux adjustment ability. Alternatively, the flux adjustment ability can also be enhanced by 37.43% for the same maximum torque.
Keywords: electric vehicles; magnetization; memory machine; variable-flux motor; permanent magnet synchronous motors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/10/3825/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/10/3825/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:10:p:3825-:d:821824
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().