A Realistic Spark-Gap Model in Computer Simulation of Blumlein Transmission Line
Bartosz Chaber and
Wiktor Łodyga
Additional contact information
Bartosz Chaber: Department of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
Wiktor Łodyga: Department of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
Energies, 2022, vol. 15, issue 11, 1-13
Abstract:
Over the years, the use of numerical simulations in the development of high voltage pulse generators has become a standard approach. Nevertheless, the modeling of spark-gaps, one of the most commonly used switching devices in such generators, has always been a weak point of the process, especially in coupled circuit and field simulations. Although the complex SPICE spark-gap models do exist, it is difficult or impossible to directly couple them with field simulations. Thus, in many cases, the spark-gap models used were elementary and required many assumptions, which led to the prolongation of the design process. Our paper describes the coupling of a realistic circuit model of an air spark-gap, with a Finite Element Method simulation, solving the wave equation in the time domain. The simulation describes the operation of a Blumlein transmission line as a pulse generator. One of the advantages of the proposed solution is that the input parameters of the empirical model are measurable physical quantities characterizing the spark-gap circuit. We have carried out two numerical experiments testing the simulation for both the matched, resistive load and for a dipole antenna connected to the output of the Blumlein transmission line. The test results confirm that the circuit-field simulation can model Blumlein transmission lines with both simple elements (e.g., resistors) and complex circuits (e.g., an equivalent circuit of a dipole antenna) attached to its terminals.
Keywords: finite element method; circuit simulation; high voltage engineering; pulsed power generation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/3919/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/3919/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:3919-:d:824342
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().