EconPapers    
Economics at your fingertips  
 

A Realistic Spark-Gap Model in Computer Simulation of Blumlein Transmission Line

Bartosz Chaber and Wiktor Łodyga
Additional contact information
Bartosz Chaber: Department of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
Wiktor Łodyga: Department of Electrical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland

Energies, 2022, vol. 15, issue 11, 1-13

Abstract: Over the years, the use of numerical simulations in the development of high voltage pulse generators has become a standard approach. Nevertheless, the modeling of spark-gaps, one of the most commonly used switching devices in such generators, has always been a weak point of the process, especially in coupled circuit and field simulations. Although the complex SPICE spark-gap models do exist, it is difficult or impossible to directly couple them with field simulations. Thus, in many cases, the spark-gap models used were elementary and required many assumptions, which led to the prolongation of the design process. Our paper describes the coupling of a realistic circuit model of an air spark-gap, with a Finite Element Method simulation, solving the wave equation in the time domain. The simulation describes the operation of a Blumlein transmission line as a pulse generator. One of the advantages of the proposed solution is that the input parameters of the empirical model are measurable physical quantities characterizing the spark-gap circuit. We have carried out two numerical experiments testing the simulation for both the matched, resistive load and for a dipole antenna connected to the output of the Blumlein transmission line. The test results confirm that the circuit-field simulation can model Blumlein transmission lines with both simple elements (e.g., resistors) and complex circuits (e.g., an equivalent circuit of a dipole antenna) attached to its terminals.

Keywords: finite element method; circuit simulation; high voltage engineering; pulsed power generation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/3919/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/3919/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:3919-:d:824342

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3919-:d:824342