EconPapers    
Economics at your fingertips  
 

Exploring the Impact of Parallel Architecture on Improving Adaptable Neuro-Fuzzy Inference Systems for Gas-Insulated Switch Defect Recognition

I-Hua Chung and Yu-Hsun Lin
Additional contact information
I-Hua Chung: Master’s Program in Offshore Wind Energy Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
Yu-Hsun Lin: Department of Electrical Engineering, National Penghu University of Science and Technology, Magong 880, Taiwan

Energies, 2022, vol. 15, issue 11, 1-39

Abstract: Gas-insulated switchgear malfunctions during power system operation may occur due to electrical, thermal, or human errors in the manufacturing process. The leading causes of insulation deterioration of gas-insulated switchgear are discharging along the surface caused by dirt on the insulating material, internal discharge caused by impurities and cavities in the insulating material, corona discharge caused by poor assembly or construction at the site, and electric tree channel discharge caused by the intense internal discharge. Since different defects produce different partial discharge characteristics, the operating power equipment can be analyzed using measurement instruments to detect partial discharge for preventive equipment fault diagnosis, avoiding unnecessary power outages and losses; therefore, evaluating the defects in gas-insulated switchgear is essential. In this study, three gas-insulated switchgears were prefabricated with different defects before encapsulation, and the partial discharge data of each defect were measured by applying different test voltages. The adaptive neuro-fuzzy inference system (ANFIS) input data were used to evaluate the recognition effect, showing that the average recognition rate of the core for all defects was over 90%. The proposed system architecture can continuously accumulate the defect measurement database of gas-insulated switchgear and be used as a reference for constructing electrical equipment defect recognition systems.

Keywords: partial discharge; gas-insulated switches; adaptive class neuro-fuzzy inference systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/3940/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/3940/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:3940-:d:824907

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3940-:d:824907