EconPapers    
Economics at your fingertips  
 

A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates

Abdulrahman Joubi, Yutaro Akimoto and Keiichi Okajima
Additional contact information
Abdulrahman Joubi: Graduate School of Science and Technology, University of Tsukuba, Tsukuba 3058573, Japan
Yutaro Akimoto: Graduate School of Science and Technology, University of Tsukuba, Tsukuba 3058573, Japan
Keiichi Okajima: Graduate School of Science and Technology, University of Tsukuba, Tsukuba 3058573, Japan

Energies, 2022, vol. 15, issue 11, 1-14

Abstract: Hydrogen production from surplus solar electricity as energy storage for export purposes can push towards large-scale application of solar energy in the United Arab Emirates and the Middle East region; this region’s properties of high solar irradiance and vast empty lands provide a good fit for solar technologies such as concentrated solar power and photovoltaics. However, a thorough comparison between the two solar technologies, as well as investigating the infrastructure of the United Arab Emirates for a well-to-ship hydrogen pathway, is yet to be fully carried out. Therefore, in this study we aim to provide a full model for solar hydrogen production and delivery by evaluating the potential of concentrated solar power and photovoltaics in the UAE, then comparing two different pathways for hydrogen delivery based on the location of hydrogen production sites. A Solid Oxide Cell Electrolyzer (SOEC) is used for technical comparison, while the shortest routes for hydrogen transport were analyzed using Geographical Information System (GIS). The results show that CSP technology coupled with SOEC is the most favorable pathway for large-scale hydrogen from solar energy production in the UAE for export purposes. Although PV has a slightly higher electricity potential compared to CSP, around 42 GWh/km 2 to 41.1 GWh/km 2 , respectively, CSP show the highest productions rates of over 6 megatons of hydrogen when the electrolyzer is placed at the same site as the CSP plant, while PV generates 5.15 megatons when hydrogen is produced at the same site with PV plants; meanwhile, hydrogen from PV and CSP shows similar levels of 4.8 and 4.6 megatons of hydrogen, respectively, when electrolyzers are placed at port sites. Even considering the constraints in the UAE’s infrastructure and suggesting new shorter electrical transmission lines that could save up to 0.1 megatons of hydrogen in the second pathway, production at the same site with CSP is still the most advantageous scenario.

Keywords: concentrated solar power; photovoltaics; GIS; hydrogen supply chain; renewable energy; the Middle East region; United Arab Emirates (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/4000/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/4000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:4000-:d:827114

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4000-:d:827114