EconPapers    
Economics at your fingertips  
 

Enhancing the Performance of Eskom’s Cahora Bassa HVDC Scheme and Harmonic Distortion Minimization of LCC-HVDC Scheme Using the VSC-HVDC Link

Innocent Ewean Davidson, Oluwafemi Emmanuel Oni, Anuoluwapo Aluko and Elutunji Buraimoh
Additional contact information
Innocent Ewean Davidson: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Oluwafemi Emmanuel Oni: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Anuoluwapo Aluko: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Elutunji Buraimoh: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa

Energies, 2022, vol. 15, issue 11, 1-17

Abstract: Cahora Bassa, a thyristor-based High Voltage Direct (HVDC) link, transmits 1920 MW of power from a hydro-power plant in Zambezi River, north of Mozambique, to Apollo Substation in Johannesburg, South Africa. The high degree of harmonics distortion that is transferred into the AC side of the transmission network and the continuous increase in the rate at which commutation failure occurs during systems disturbance are both flaws in the utilization of this HVDC converter technology. AC and DC filters with rugged controllers are often used to minimize this effect but are limited in scope. Modern converter technology, such as the Voltage Source Converter (VSC), was proposed in this study to reduce harmonics content level, increase power transfer capabilities, enhance network stability, and reduce the rate of commutation failure occurrence. This paper, therefore, evaluates the performance analysis of the Cahora Bassa HVDC link and its level of harmonic distortion in the line commutated converters. A proposed method of utilizing VSC HVDC is provided as a suitable solution using three modular-level voltage source converter technology. Current and voltage waveform characteristics during a three-phase short circuits fault were analyzed, and the latest developments in the area of VSC HVDC were discussed. The results show a lower total harmonics distortion with the usage of VSC HVDC converter technology at the inverter station. The continuous occurrence of commutation failure was minimized by implementing a new converter architecture. The network simulation and analysis were carried out using the DIgSILENT PowerFactory engineering software tool.

Keywords: HVDC; harmonic distortion; line commutated converter; voltage source converter; generation stability; electrical losses (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/4008/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/4008/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:4008-:d:827512

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4008-:d:827512