Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates
Llinet Benavides Cesar,
Rodrigo Amaro e Silva,
Miguel Ángel Manso Callejo and
Calimanut-Ionut Cira
Additional contact information
Llinet Benavides Cesar: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Rodrigo Amaro e Silva: O.I.E. Centre Observation, Impacts, Energy, MINES ParisTech, PSL Research University, 06904 Paris, France
Miguel Ángel Manso Callejo: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Calimanut-Ionut Cira: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Energies, 2022, vol. 15, issue 12, 1-23
Abstract:
To better forecast solar variability, spatio-temporal methods exploit spatially distributed solar time series, seeking to improve forecasting accuracy by including neighboring solar information. This review work is, to the authors’ understanding, the first to offer a compendium of references published since 2011 on such approaches for global horizontal irradiance and photovoltaic generation. The identified bibliography was categorized according to different parameters (method, data sources, baselines, performance metrics, forecasting horizon), and associated statistics were explored. Lastly, general findings are outlined, and suggestions for future research are provided based on the identification of less explored methods and data sources.
Keywords: solar forecasting; spatio-temporal; in situ measurements; review; statistical methods; physical methods; machine learning methods; deep learning methods; hybrid methods (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/12/4341/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/12/4341/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:12:p:4341-:d:838328
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().