UCB-SEnMod: A Model for Analyzing Future Energy Systems with 100% Renewable Energy Technologies—Methodology
Alexander Blinn and
Henrik te Heesen
Additional contact information
Alexander Blinn: Institute for Operations and Technology Management, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Henrik te Heesen: Institute for Operations and Technology Management, Environmental Campus Birkenfeld, Trier University of Applied Sciences, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Energies, 2022, vol. 15, issue 12, 1-22
Abstract:
While the contribution of renewable energy technologies to the energy system is increasing, so is its level of complexity. In addition to new types of consumer systems, the future system will be characterized by volatile generation plants that will require storage technologies. Furthermore, a solid interconnected system that enables the transit of electrical energy can reduce the need for generation and storage systems. Therefore, appropriate methods are needed to analyze energy production and consumption interactions within different system constellations. Energy system models can help to understand and build these future energy systems. However, although various energy models already exist, none of them can cover all issues related to integrating renewable energy systems. The existing research gap is also reflected in the fact that current models cannot model the entire energy system for very high shares of renewable energies with high temporal resolution (15 min or 1-h steps) and high spatial resolution. Additionally, the low availability of open-source energy models leads to a lack of transparency about exactly how they work. To close this gap, the sector-coupled energy model ( UCB-SEnMod ) was developed. Its unique features are the modular structure, high flexibility, and applicability, enabling it to model any system constellation and can be easily extended with new functions due to its software design. Due to the software architecture, it is possible to map individual buildings or companies and regions, or even countries. In addition, we plan to make the energy model UCB-SEnMod available as an open-source framework to enable users to understand the functionality and configuration options more easily. This paper presents the methodology of the UCB-SEnMod model. The main components of the model are described in detail, i.e., the energy generation systems, the consumption components in the electricity, heat, and transport sectors, and the possibilities of load balancing.
Keywords: energy; modeling; energy system; energy modeling; energy system modeling; renewable energy; environmental effect; strategy; CO 2; electricity; heat; transport; optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/12/4383/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/12/4383/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:12:p:4383-:d:840016
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().