EconPapers    
Economics at your fingertips  
 

Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure

Mona Faraji Niri, Jimiama Mafeni Mase and James Marco
Additional contact information
Mona Faraji Niri: Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
Jimiama Mafeni Mase: Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
James Marco: Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK

Energies, 2022, vol. 15, issue 12, 1-20

Abstract: Li-ion batteries play a critical role in the transition to a net-zero future. The discovery of new materials and the design of novel microstructures for battery electrodes is necessary for the acceleration of this transition. The battery electrode microstructure can potentially reveal the cells’ electrochemical characteristics in great detail. However, revealing this relation is very challenging due to the high dimensionality of the problem and the large number of microstructure features. In fact, it cannot be achieved via the traditional trial-and-error approaches, which are associated with significant cost, time, and resource waste. In search for a systematic microstructure analysis and design method, this paper aims at quantifying the Li-ion battery electrode structural characteristics via deep learning models. Deliberately, here, a methodology and framework are developed to reveal the hidden microstructure characteristics via 2D and 3D images through dimensionality reduction. The framework is based on an auto-encoder decoder for microstructure reconstruction and feature extraction. Unlike most of the existing studies that focus on a limited number of features extracted from images, this study concentrates directly on the images and has the potential to define the number of features to be extracted. The proposed methodology and model are computationally effective and have been tested on a real open-source dataset where the results show the efficiency of reconstruction and feature extraction based on the training and validation mean squared errors between 0.068 and 0.111 and from 0.071 to 0.110, respectively. This study is believed to guide Li-ion battery scientists and manufacturers in the design and production of next generation Li-ion cells in a systematic way by correlating the extracted features at the microstructure level and the cell’s electrochemical characteristics.

Keywords: Li-ion battery; deep learning; autoencoder decoder; electrode microstructure; image reconstruction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/12/4489/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/12/4489/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:12:p:4489-:d:843250

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4489-:d:843250