Efficiency of Semi-Automatic Control Ethanol Distillation Using a Vacuum-Tube Parabolic Solar Collector
Sumol Sae-Heng Pisitsungkakarn and
Pichitpon Neamyou
Additional contact information
Sumol Sae-Heng Pisitsungkakarn: College of Industrial Technology (CIT), King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
Pichitpon Neamyou: Research Centre for Combustion Technology and Alternative Energy (CTAE), Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Energies, 2022, vol. 15, issue 13, 1-18
Abstract:
Thailand is an agricultural country with several agro-industrial by-products that can be processed into fuels. Although producing ethanol from agro-industrial by-products is an interesting option, the process of distilling ethanol from fermented agricultural products requires a high temperature to increase the ethanol concentration from 10% to 95%. In this research, solar ethanol distillation equipment incorporating a solar parabolic collector with a vacuum heat absorber tube to increase efficiency by reducing heat loss was designed and developed. An electronic device was used to control the distillation process, maintain the required temperature, and make suitable adjustments to the solar radiation acceptance angles of the parabolic solar collector. Ethanol dilution at concentrations of 10%, 15%, and 20%, and Sato (Thai Rice Wine) were used as the reactant in the distillation process. The result of distilling ethanol distillation with a semi-automatic control using a vacuum-tube parabolic solar collector showed that the thermal efficiency of the receiver was 12.61%, 13.93%, 18.58%, and 17.40%, respectively. The thermal efficiency of the heat exchanger was 11.27%, 10.76%, 13.35%, and 12.35%, respectively. The final concentration of ethanol was 67%, 76%, 82%, and 80%, respectively, and the amount of the distilled ethanol was 330 mL, 352 mL, 398 mL, and 360 mL, respectively.
Keywords: energy; fuel; semi-automatic solar collector; concentrating parabolic collector; distilling ethanol; thermal efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4688/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4688/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4688-:d:848398
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().