Exploitation of the Maximum Entropy Principle in the Study of Thermal Conductivity of Silicon, Germanium and Graphene
Giovanni Mascali
Additional contact information
Giovanni Mascali: Department of Mathematics and Computer Science, Università degli Studi della Calabria and INFN-Gruppo c. Cosenza, 87036 Cosenza, Italy
Energies, 2022, vol. 15, issue 13, 1-28
Abstract:
In this paper, we review the application of a recent formula for the lattice thermal conductivity to silicon and germanium, which are two of the most commonly used materials in electronic devices, and to graphene, one the most promising new materials. The formula, which is based on a hierarchy of macroscopic models that generalize the Cattaneo equation, is capable of reproducing the results achieved by means of the well-known Callaway formula. In semiconductors, energy transport is largely due to acoustic phonons, therefore one can choose suitable moments of their occupation numbers as variables of the models. Equations determining the time evolution of these state variables are derived from the Boltzmann–Peierls transport equation by integration, while the maximum entropy principle (MEP) is used to obtain closure relations for the extra variables. All relevant phonon scattering mechanisms are taken into account. We present numerical results regarding the steady-state and dynamical thermal conductivities of silicon, germanium, and graphene, showing their main characteristics and how these are affected by the various scatterings. The results are in good qualitative and quantitative agreement with those in the literature, confirming that MEP is a valid method for developing macroscopic models of charge and energy transport in semiconductor materials.
Keywords: thermal conductivity; moments method; maximum entropy principle; silicon; germanium; graphene (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4718/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4718/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4718-:d:849259
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().