Optimal Sizing of Grid-Scaled Battery with Consideration of Battery Installation and System Power-Generation Costs
Chalermjit Klansupar and
Surachai Chaitusaney
Additional contact information
Chalermjit Klansupar: Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
Surachai Chaitusaney: Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
Energies, 2022, vol. 15, issue 13, 1-18
Abstract:
Variable renewable energy (VRE) generation changes the shape of residual demand curves, contributing to the high operating costs of conventional generators. Moreover, the variable characteristics of VRE cause a mismatch between electricity demand and power generation, resulting in a greater expected energy not supplied (EENS) value. EENS involves an expected outage cost, which is one of the important components of power-generation costs. A utility-scale battery energy storage system (BESS) is popularly used to provide ancillary services to mitigate the VRE impact. The general BESS ancillary-service applications are as a spinning reserve, for regulation, and for ramping. A method to determine optimal sizing and the optimal daily-operation schedule of a grid-scale BESS (to compensate for the negative impacts of VRE in terms of operating costs, power-generation-reliability constraints, avoided expected-outage costs, and the installation cost of the BESS) is proposed in this paper. Moreover, the optimal BESS application at a specific time during the day can be selected. The method is based on a multiple-BESS-applications unit-commitment problem (MB-UC), which is solved by mixed-integer programming (MIP). The results show a different period for a BESS to operate at its best value in each application, and more benefits are found when operating the BESS in multiple applications.
Keywords: energy storage system; expected energy not supplied; mixed-integer programming; optimal sizing; optimal daily-operation schedule; power-generation cost; variable renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4742/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4742/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4742-:d:850834
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().