Adaptive Sliding-Mode Control for Electric Spring in Microgrids with Distributed Renewable Energy
Fagen Yin,
Chun Wang and
Weizhang Wang
Additional contact information
Fagen Yin: School of Information Engineering, Nanchang University, Nanchang 330031, China
Chun Wang: School of Information Engineering, Nanchang University, Nanchang 330031, China
Weizhang Wang: State Grid Nanchang Power Supply Company, Nanchang 330096, China
Energies, 2022, vol. 15, issue 13, 1-15
Abstract:
Electric springs (ESs) are novel electric-power devices that alleviate power-quality problems such as voltage fluctuations induced by grid access to renewable energy resources. However, with the continuous increase of uncertain factors such as parameter perturbation and external disturbance, the environment becomes more complicated, so traditional linear controllers for ESs are finding it increasingly difficult to meet the control requirements due to narrow stability regions, low precision, and poor robustness. To overcome this problem, we propose herein a control method that combines adaptive control and sliding-mode control and apply it to ESs. First, an inexact model of the ES system was established and analyzed. Next, an ES control system was designed based on adaptive sliding-mode control, and then the asymptotic stability of the closed-loop system is proven. Finally, the proposed control system was verified through a MATLAB simulation. The results show that adaptive sliding-mode control not only ensures the voltage stability of critical loads in the microgrid but also resists the influence of parameter perturbation and external disturbances, leading to better steady-state and dynamic performance than a linear controller.
Keywords: microgrid; voltage stability; electric spring (ES); adaptive prediction; sliding mode controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4842/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4842/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4842-:d:854232
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().