EconPapers    
Economics at your fingertips  
 

A Fuzzy-PSO-PID with UPFC-RFB Solution for an LFC of an Interlinked Hydro Power System

Milan Joshi, Gulshan Sharma, Pitshou N. Bokoro and Narayanan Krishnan
Additional contact information
Milan Joshi: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87106, USA
Gulshan Sharma: Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
Pitshou N. Bokoro: Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
Narayanan Krishnan: Department of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India

Energies, 2022, vol. 15, issue 13, 1-17

Abstract: An LFC plays a vital part in passing on quality electric energy to energy consumers. Furthermore, with cutting-edge designs to move to modern and pollution-free energy generation, it may be conceivable to have a major hydropower in the future. Hydro plants are not suitable for continuous load alteration due to the large response time of hydroturbines. Hence, this paper shows a novel control design for an LFC of a hydro-hydro interlinked system based on joint actions of fuzzy logic with PID effectively optimized through particle swarm optimization (PSO) resulting in a Fuzzy-PSO-PID. The outcome of Fuzzy-PSO-PID is evaluated for step load variation in one of the regions of hydropower, and the outcomes of Fuzzy-PSO-PID are compared with a recently published LFC with respect to integral time absolute error (ITAE) value, values of PID, and graphical outcomes to show the impact of the proposed LFC action. The numerical results show that the ITAE value (0.002725) obtained through the proposed design is minimum in comparison to error values achieved through other LFC actions, and the pickup values obtained on these error values are considered to achieve the desired LFC. However, there is still scope for LFC enhancement as responses of hydropower are sluggish with higher oscillations; hence the UPFC and RFB are integrated into the interlinked hydro-hydro system, and the application outcomes are evaluated again considering the non-linearity, standard load alteration, random load pattern, and in view of parametric alterations. It is seen that the ITAE value reduces to 0.002471 from 0.002725 when UPFC is connected to the tie-line, and it further reduces to 0.001103 when a UPFC-RFB combination is used with Fuzzy-PSO-PID for a hydro leading system. The positive impact of the UPFC-RFB for hydropower is also seen from the application results.

Keywords: LFC; ACE; fuzzy logic; PSO; FACTS; RFB; UPFC (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4847/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4847/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4847-:d:853910

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4847-:d:853910