An LBM-Based Investigation on the Mixing Mechanism of Double Rows Film Cooling with the Combination of Forward and Backward Jets
Yanqin Shangguan and
Fei Cao
Additional contact information
Yanqin Shangguan: College of Mechanical and Electrical Engineering, Hohai University, No. 1 Xikang Road, Nanjing 210098, China
Fei Cao: College of Mechanical and Electrical Engineering, Hohai University, No. 1 Xikang Road, Nanjing 210098, China
Energies, 2022, vol. 15, issue 13, 1-19
Abstract:
Film cooling has been widely applied to the highly efficient thermal protection of gas turbines. By using the simplified thermal lattice Boltzmann method (STLBM), a series of large-scale simulations of film cooling are performed to dig up the mixing mechanism of double rows film cooling with the combination of forward and backward jets at the first attempt. The combination of an upstream row with forward jet and a downstream row with backward jet is considered. The Reynolds number is 4000. The blowing ratio of the upstream coolant jet is fixed as B R 1 = 0.5 . For the downstream coolant jet ( B R 2 ), five values ranging from 0.2–0.8 are considered. The inclination angles of forward jet and backward jet are 35° and 145°, respectively. The numerical results reveal that the performance of film cooling is greatly improved by backward downstream jet due to the suppression of counterrotating vortex pair (CVP). Moreover, the flow structure is changed with the blowing ratio of backward jet. An anti-CVP having the opposite rotational direction to CVP appears as the blowing ratio of backward jet is large. The special flow structure weakens the adverse effect of CVP and transports much coolant jet to the cooled wall. Correspondingly, the time-averaged film cooling effectiveness is increased and the fluctuation of film cooling effectiveness is decreased. All of these indicate that a backward downstream jet with a large blowing ratio improves film cooling performance. The results obtained in this work help to the optimization of film cooling scheme, which also benefit the promotion and application of STLBM in gas turbine engineering.
Keywords: simplified thermal Boltzmann method; mixing mechanism; double rows film cooling; forward and backward jets; counterrotating vortex pair (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4848/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4848/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4848-:d:853918
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().