EconPapers    
Economics at your fingertips  
 

Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory

Huijun Feng, Lingen Chen, Wei Tang and Yanlin Ge
Additional contact information
Huijun Feng: Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Lingen Chen: Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Wei Tang: College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Yanlin Ge: Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China

Energies, 2022, vol. 15, issue 13, 1-20

Abstract: A one-dimensional dual-pressure steam turbine (ST) model for the marine Rankine cycle is built in this paper. Based on constructal theory, the optimal design of the dual-pressure ST is performed with a fixed total volume of the high- and low-pressure STs. The total power output (PO) of the dual-pressure ST is maximized. Seventeen parameters, including the dimensionless average diameters (DADs) of the stages, steam inlet angles (SIAs) of the stages, average reaction degrees (ARDs) of the stages, and volume ratio of the high-pressure ST are taken as optimization variables. The optimal structure parameters of the stages are gained. It reveals that the total PO of the dual-pressure ST is increased by 2.59% by optimizing the average diameter of the Curtis stage, and the change in the total PO is not obvious by optimizing the average diameter of the third stage of the low-pressure ST. Both the total PO and the corresponding efficiency of the dual-pressure ST are increased by 10.8% after simultaneously optimizing 17 variables with the help of the Matlab optimization toolbox. The novelty of this paper is introducing constructal theory into turbine performance optimization by varying seventeen structure, thermal and flow parameters, and the result shows that the constructal optimization effect is remarkable. Optimal designs of practical STs can be guided by the optimization results gained in this paper.

Keywords: constructal theory; steam Rankine cycle; dual-pressure steam turbine; power output; thermal efficiency; optimal structure design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4854/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4854/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4854-:d:854174

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4854-:d:854174