EconPapers    
Economics at your fingertips  
 

How to Improve an Offshore Wind Station

João Paulo N. Torres, Ana Sofia De Jesus and Ricardo A. Marques Lameirinhas
Additional contact information
João Paulo N. Torres: Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
Ana Sofia De Jesus: Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
Ricardo A. Marques Lameirinhas: Instituto de Telecomunicações, 1049-001 Lisbon, Portugal

Energies, 2022, vol. 15, issue 13, 1-20

Abstract: The ocean is approximately 71% of the Earth’s surface and has a lot of resources available. Nowadays, human beings are looking for renewable ways to obtain energy. Offshore power can be obtained in several different ways. Offshore wind power is the most used renewable offshore energy. Since 2017, offshore wind power has a competitive price in comparison with conventional sources. In the 2010s, offshore wind power grew at over 30% per year. Although it has remained less than one percent of the overall world electricity generation, offshore wind power becomes quite relevant on the northern European countries from 2020. However, there are other ways to obtain energy offshore such as using tides and the sun. These types of farms are expensive and difficult to install and, therefore, we propose a combination of several renewable energies in one farm. The main ambition of this work is to try to reduce the installation and maintenance costs of the two types of offshore renewable energies by creating a structure capable of supporting the two types of turbines. To accomplish it, a theoretical study will be made, a brief state-of-the-art will be presented, the chosen items and the environment chosen for installation will be referred to, a prototype will be simulated using a multiphysics software and, finally, the results and conclusions will be presented, based on a Portuguese case study. How piezoelectric materials can enter offshore farms to increase efficiency is also referred to. The project proved to be possible of producing approximately 12.5 GWh of energy annually, more or less enough to supply 10 thousand homes. However, the installation of the piezoelectric materials did not prove to be viable as it is an expensive technology and does not produce a large amount of energy.

Keywords: co-located offshore renewable energies; piezoelectricity; tidal power; wind power (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4873/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4873/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4873-:d:854528

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4873-:d:854528