Engineering Possibility Studies of a Novel Cylinder-Type FOWT Using Torus Structure with Annular Flow
Xiaolei Liu and
Motohiko Murai
Additional contact information
Xiaolei Liu: Graduate School of Engineering Science, Yokohama National University, Yokohama 2400067, Japan
Motohiko Murai: Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 2400067, Japan
Energies, 2022, vol. 15, issue 13, 1-16
Abstract:
This paper proposes and researches a novel cylinder-type FOWT using a neutrally buoyant double-layer torus structure with annular flow; its oscillatory motion in severe sea conditions is controlled by a spinning top device designed as a neutrally buoyant double-layer torus structure with annular flow water in a torus structure with a small internal radius, and welded to the periphery of the cylinder-type FOWT underwater buoyancy-providing part. The rotational axis retention effect and the gyroscopic effect are considered appropriate approaches to suppress the oscillating motion of FOWT. To obtain a better hydrodynamic response, the scale of the torus structure, such as its radius, the radius of the internal annular flow water, and the angular velocity of the annular flow water are taken as the design parameters, and a large number of comparative calculations based on the fluid–solid coupling theory of potential flow are carried out to determine the appropriate design parameters. Eventually, on the basis of the obtained suitable design parameters, the proposed conceptual design approach is demonstrated to be feasible in view of the energy consumption.
Keywords: spinning top; annular flow; torus structure; hydrodynamic response; design parameters (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/13/4919/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/13/4919/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:13:p:4919-:d:856233
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().