Multiphysics Design of an Automotive Regenerative Eddy Current Damper
Umid Jamolov,
Francesco Peccini and
Giovanni Maizza
Additional contact information
Umid Jamolov: Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy
Francesco Peccini: AKKA Belgium, Avenue Jules Bordet 168, 1140 Evere, Belgium
Giovanni Maizza: Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
Energies, 2022, vol. 15, issue 14, 1-18
Abstract:
This research presents a finite element multi-physics design methodology that can be used to develop and optimise the inherent functions and geometry of an innovative regenerative eddy current (REC) damper for the suspension of B class vehicles. This methodology was inspired by a previous work which has been applied successfully for the development of an eddy current (EC) damper used for the same type of applications. It is based on a multifield finite element coupled model that can be used to fulfil the electromagnetic, thermal, and fluid dynamic field properties and boundary conditions of a REC damper, as well as its non-linear material properties and boundary conditions, while also analysing its damping performance. The proposed REC damper features a variable fail-safe damping force, while electric power is advantageously regenerated at high suspension frequencies. Its damping performance has been benchmarked against that of a regular hydraulic shock absorber (selected as a reference) by analysing the dynamic behaviour of both systems using a quarter car suspension model. The results are expressed in terms of damping force, harvested power, thermal field, comfort and handling, with reference to ISO-class roads. The optimisation analysis of the REC damper has suggested useful guidelines for the harmonisation of damping and regenerative power performances during service operation at different piston speeds.
Keywords: eddy current damper; regenerative shock absorber; automotive suspension; vehicle dynamics; finite element multi-physics; soft and hard magnetic materials (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5044/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5044/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5044-:d:859862
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().