The Laminar Burning Velocities of Stoichiometric Methane–Air Mixture from Closed Vessels Measurements
Maria Mitu,
Codina Movileanu and
Venera Giurcan
Additional contact information
Maria Mitu: “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
Codina Movileanu: “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
Venera Giurcan: “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
Energies, 2022, vol. 15, issue 14, 1-17
Abstract:
The present work aims to evaluate the performance of the constant-volume method by several sets of experiments carried out in three different closed vessels (a sphere and two cylinders) analyzing the obtained results in order to obtain accurate laminar burning velocities. Accurate laminar burning velocities can be used in the development of computational fluid dynamics models in order to design new internal combustion engines with a higher efficiency and lower fuel consumption leading to a lower degree of environmental pollution. The pressure-time histories obtained at various initial pressures from 0.4 to 1.4 bar and ambient initial temperature were analyzed and processed using two different correlations (one implying the cubic low coefficient and the other implying the burnt mass fraction). The laminar burning velocities obtained at various initial pressures are necessary for the realization of a complete kinetic study regarding the combustion reaction and testing the actual reaction mechanisms. Data obtained from measurements were completed and compared with data obtained from runs using two different detailed chemical kinetic mechanisms (GRI 3.0 and Warnatz) and with laminar burning velocities from literature. Our experimental burning velocities ranging from 35.3 cm/s (data from spherical vessel S obtained using the burnt mass fraction) to 37.5 cm/s (data from cylindrical vessel C1 obtained using the cubic law) are inside the interval of confidence as reported by other researchers. From the dependence of the laminar burning velocity on the initial pressure, the baric coefficients were obtained. These coefficients were further used to obtain the overall reaction orders. The baric coefficients (ranging between −0.349 and −0.212) and the overall reaction orders (ranging between 1.42 and 1.50) obtained in this study fall within the reference range of data specific to methane–air mixtures examined at ambient initial temperature.
Keywords: methane; closed vessels; laminar burning velocity; baric coefficient; overall reaction order (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5058/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5058/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5058-:d:860259
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().