Criticalities of the Outdoor Infrared Inspection of Photovoltaic Modules by Means of Drones
Silvano Vergura
Additional contact information
Silvano Vergura: DEI—Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
Energies, 2022, vol. 15, issue 14, 1-19
Abstract:
Photovoltaic plants are helping to reduce CO 2 emissions, but the energy performance of photovoltaic systems must remain high throughout their operational life. Supervision and monitoring are mandatory for large photovoltaic plants because failures can cause high power losses due to the large number of photovoltaic modules. Infrared analysis is effective and reliable in detecting anomalies or failures in photovoltaic modules, but it is time-consuming and expensive when the infrared inspection of large photovoltaic plants is manual. Nowadays, the diffusion of unmanned aerial vehicles equipped with infrared cameras can support the fast supervision of photovoltaic plants. Nevertheless, the use of drones is regulated by international and national rules; consequently, it is not always possible to use a drone, or its utilization is limited based on geographic areas and/or authorizations. Moreover, infrared analysis requires additional requirements when done by drone, because the mutual position between the photovoltaic modules and the infrared camera affects the goodness of the infrared acquisition. This article discusses these critical issues, directs the reader to official, national, and geographic maps for drones, and suggests technical solutions for some specific issues not considered in the technical specification for the outdoor infrared thermography of photovoltaic modules. In particular, the paper proposes a systematic procedure for the legal and effective infrared inspection of photovoltaic modules by means of a drone and proposes improvements for some issues not discussed in the international rules: the correction of infrared images with respect to the view angle, the impact of a mid-wave and long-wave infrared sensor on the acquired image, and the impact of air transmittance.
Keywords: defects detection; European Aviation Safety Agency; emissivity; Federal Aviation Administration; infrared analysis; photovoltaic modules; unmanned aerial vehicle; view angle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5086/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5086/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5086-:d:861143
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().