EconPapers    
Economics at your fingertips  
 

Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators

Marc-Alain Andoh, Kone Gbah and Christophe Volat
Additional contact information
Marc-Alain Andoh: International Research Center on Atmospheric Icing and Electrical Network Engineering, University of Quebec at Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada
Kone Gbah: Institut National Polytechnique, Houphouët-Boigny, Yamoussoukro BP 1093, Côte d’Ivoire
Christophe Volat: International Research Center on Atmospheric Icing and Electrical Network Engineering, University of Quebec at Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada

Energies, 2022, vol. 15, issue 14, 1-17

Abstract: This paper introduces a new geometry for the study of dry band formation. Firstly, a thermoelectric simulation of a 69 kV uniformly polluted composite insulator was performed. The results obtained show that thermal stress is greater at the rod surface where current density is maximum. In order to experimentally reproduce the constriction of current density lines on the insulator rod surface, which is the cause of dry band formation, the development of a new simple geometric setup, which was then tested experimentally, was proposed. For this purpose, an ESDD value corresponding to a high level of pollution was used for each polluted sample, and the samples were placed in a climate chamber at constant 90% relative humidity and a constant ambient temperature of 20 °C. Low-voltage tests permitted the determination of the wetting duration, which corresponds to the maximum surface conductance of the polluted layer. The values obtained agree with the 10–40 min duration recommended in IEC 60507. Moreover, the tests performed at a higher voltage demonstrated the efficiency of the proposed setup to simulate the complex process of dry band formation in a reproducible way in terms of leakage current and temperature behavior. The proposed setup is a new and simple method that can be easily used by the electrical industry to develop new material for the next generation of overhead line composite insulators without requiring costly HV equipment.

Keywords: dry band formation; composite insulator; thermoelectric modeling; pollution layer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5108/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5108/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5108-:d:861679

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5108-:d:861679