EconPapers    
Economics at your fingertips  
 

The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model

Chrispin Tumba Tshiani and Patrice Umenne
Additional contact information
Chrispin Tumba Tshiani: Department of Electrical Engineering, School of Engineering, College of Science, Engineering and Technology (CSET), Florida Campus, University of South Africa, Johannesburg 1709, South Africa
Patrice Umenne: Department of Electrical Engineering, School of Engineering, College of Science, Engineering and Technology (CSET), Florida Campus, University of South Africa, Johannesburg 1709, South Africa

Energies, 2022, vol. 15, issue 14, 1-14

Abstract: This paper investigates the characterization of an electric double-layer capacitor (EDLC). In this study, the 300 F and 400 F EDLC supercapacitors are connected in a circuit in a laboratory experiment to produce their charge/discharge profiles at a constant current. The acquired charge/discharge profiles were used to determine the mathematical parameters of the EDLCs using the “Faranda model”, or “two-branch model”, of the EDLC. The parameters extracted from the equivalent circuit model were then used as inputs to a designed Python/MATLAB/Simulink (PMS)-hybrid model of an EDLC. This was simulated to obtain charge/discharge profiles. The resulting experimental- and simulated-charge/discharge profiles of the EDLCs were compared with each other, by superimposing their profiles to determine the accuracy of the PMS model. The PMS model was found to be very accurate. The innovation of this work lies in modeling a supercapacitor, mostly in the Python programming language in combination with a MATLAB/Simulink model. The experimental-charge/discharge profiles obtained were used to calculate the equivalent circuit resistance (ESR) and the capacitance of the EDLCs, which were compared with the existing datasheet values of the EDLCs. The characterization of the EDLC supercapacitor was done to derive a flexible PMS model of the EDLC, which can be used in a microgrid hybrid energy-storage system (HESS) to show the potential of the EDLC in improving battery lifespan.

Keywords: characterization; EDLC; hybrid energy-storage system (HESS); microgrid; Python/MATLAB/Simulink (PMS); supercapacitor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5193/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5193/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5193-:d:865139

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5193-:d:865139