EconPapers    
Economics at your fingertips  
 

Power Quality Management Strategy for High-Speed Railway Traction Power Supply System Based on MMC-RPC

Teng Li and Yongbin Shi
Additional contact information
Teng Li: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Yongbin Shi: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Energies, 2022, vol. 15, issue 14, 1-20

Abstract: This paper adopts the Modular Multilevel Converter Type Railway Power Conditioner (MMC-RPC) equipment to effectively manage the power quality of the high-speed railway traction power supply system including the reactive power and negative sequence component. Firstly, the single-phase model of the MMC was established to deduce the working characteristics of the MMC-RPC and its compensation principle for the traction power supply system with the v / v wiring transformer. Secondly, the adaptive VSG control strategy was adopted for the inverter of the MMC-RPC to provide dynamic inertial and damping support for the traction power supply system based on the virtual synchronous generator (VSG) control. Compared with the traditional double closed-loop (DCL) and VSG controls, it has better anti-disturbance and dynamic performance. The root locus analysis of control parameters based on a small signal model shows that VSG control can provide more stability margin. Furthermore, Differential Flatness Control (DFC) was used in the inner-loop controller to ensure the stable control of the inverter and the stability was verified by the Lyapunov stability analysis. For the rectifier of the MMC-RPC, a hierarchical three-level control strategy with system-level control, cluster-group voltage control, and inter-cluster voltage control for keeping the voltage balance was adopted. Finally, simulation results on the Matlab/Simulink platform verified the effectiveness and stability of the joint control applied in the MMC-RPC.

Keywords: modular multilevel converter; railway power conditioner; traction power supply system; adaptive virtual synchronous generator (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5205/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5205/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5205-:d:865624

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5205-:d:865624