Multiple Fuel Injection Strategies for Compression Ignition Engines
Tyler Simpson and
Christopher Depcik
Additional contact information
Tyler Simpson: Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045, USA
Christopher Depcik: Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045, USA
Energies, 2022, vol. 15, issue 14, 1-29
Abstract:
Until the early 1990s, the predominant method of fuel delivery for compression ignition engines was the mechanical pump-line-nozzle system. These systems typically consisted of a cam-driven pump that would send pressurized fuel to the fuel injectors where injection timing was fixed according to the pressure needed to overcome the spring pressure of the injector needle. These configurations were robust; however, they were limited to a single fuel injection event per thermodynamic cycle and respectively low injection pressures of 200–300 bar. Due to their limited flexibility, a poorly mixed and highly stratified air fuel mixture would result in and produce elevated levels of both nitrogen oxides and particulate matter. The onset of stringent emissions standards caused the advancement of fuel injection technology and eventually led to the proliferation of high-pressure common rail electronic fuel injection systems. This system brought about two major advantages, the first being operation at fuel pressures up to 2500 bar. This allowed better atomization and fuel spray penetration that improves mixing and the degree of charge homogenization of the air fuel mixture. The second is that the electronic fuel injector allows for flexible and precise injection timing and quantity while allowing for multiple fuel injection events per thermodynamic cycle. To supply guidance in this area, this effort reviews the experimental history of multiple fuel injection strategies involving both diesel and biodiesel fuels through 2019. Summaries are supplied for each fuel highlighting literature consensus on the mechanisms that influence noise, performance, and emissions based on timing, amount, and type of fuel injected during multiple fuel injection strategies.
Keywords: combustion; compression ignition; emissions; fuel injection; nitrogen oxides; particulate matter; injection pressure; multiple injection (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5214/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5214/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5214-:d:865761
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().