EconPapers    
Economics at your fingertips  
 

Gearing Urban Metabolism toward the Carbon Neutrality Target: A Case Study of Hebei Province, China

Zhipeng Tang, Ziao Mei, Tao Song and Chenxinyi Yang
Additional contact information
Zhipeng Tang: Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
Ziao Mei: Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
Tao Song: Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
Chenxinyi Yang: Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China

Energies, 2022, vol. 15, issue 14, 1-16

Abstract: Urban metabolism has emerged over the past decades as an important new paradigm of regional and urban sustainability governance towards a Chinese national scheme of ‘carbon neutrality’ by 2060. Hebei province in China faces twin pressures related to its supply of water and energy resources, which has brought humans and nature into conflict. Overcoming this tension in the human-land relationship in Hebei and determining a suitable development path for the future has become a core issue for the achievement of coordinated development within the Beijing–Tianjin–Hebei region. This paper constructs a system to simulate the metabolism of water, energy, and human relationships, and uses this model to carry out simulations for Hebei province. The model establishes five scenarios: a natural development scenario, economic growth scenario, water conservation development scenario, energy conservation development scenario, and low carbon scenario. The simulation results show that, without intervention, the natural development scenario results in greater pressure on supply gaps and a greater demand for water and energy, with more production of industrial waste gas and domestic wastewater discharges. The economic growth, water conservation development, and energy conservation development scenarios focus on single economic, water conservation, and energy conservation measures by looking at core economic, water, and energy elements within the metabolic system; however, solving issues with individual elements merely leads to other, remaining problems. Under the low carbon scenario, issues with multiple elements in Hebei’s metabolic system are considered more comprehensively, so the simulation results are better than those in the other scenarios, and it better fits the future orientation of sustainable development of Hebei province.

Keywords: urban metabolism; water-energy-population nexus; system dynamics model; Hebei province; sustainability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/14/5243/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/14/5243/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:14:p:5243-:d:866739

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5243-:d:866739