Study on Fractal Characteristics of Evolution of Mining-Induced Fissures in Karst Landform
Rentao Gou,
Chengyu Jiang,
Yong Liu,
Chen Wang and
Yuanlin Li
Additional contact information
Rentao Gou: Mining College, Guizhou University, Guiyang 550025, China
Chengyu Jiang: Mining College, Guizhou University, Guiyang 550025, China
Yong Liu: Mining College, Guizhou University, Guiyang 550025, China
Chen Wang: Mining College, Guizhou University, Guiyang 550025, China
Yuanlin Li: Mining College, Guizhou University, Guiyang 550025, China
Energies, 2022, vol. 15, issue 15, 1-16
Abstract:
The karst landscape is widespread in the southern region of China. As a result of underground mining activities, the original stress equilibrium is disrupted, causing the redistribution of stress in the overlying rock layer, inducing the longitudinal fracture of mining to expand and penetrate upwards, resulting in the rupture and destabilization of the karst cave roof, thus triggering a series of engineering problems such as karst cave collapse, landslide, the discontinuous deformation of the ground surface, and soil erosion. In order to study the evolutionary characteristics of buried rock fissures in shallow coal seam mining under the karst landform, taking the shallow coal seam with the typical karst cave development landform in Guizhou as the engineering background, based on the similarity simulation experiment and fractal theory, the evolution law of buried rock fissures and network fractal characteristics under the disturbance of the karst landform mining are analyzed. The research shows that the mining-induced fracture reaches the maximum development height of 61 m on the left side of the cave, and the two sides of the cave produce uncoordinated deformation. The separation fracture below the cave is relatively developed, and the overall distribution pattern of the cave rock fracture network presents a “ladder” shape. The correlation coefficient of the fractal dimension of the rock fractures under different advancing distances is more than 0.90, and the rock fracture network under the karst landform has high self-similarity. The variation of fractal dimension with the advancing degree of the working face can be divided into four stages. The first and second stages show an exponential growth trend, and the third and fourth stages show linear changes with slopes of 0.0007 and 0.0014, respectively. The fluctuation of the fractal dimension is small. The periodic weighting of the upper roof in the cave-affected zone is frequent, the fragmentation of the fractured rock mass becomes larger, and the fractures of the upper rock mass are relatively developed. The research results can provide a reference for the study on the evolution law of mining-induced rock fissures under similar karst landforms.
Keywords: karst geomorphology; physical simulation; mining fissures; fissure evolution; fractal theory (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5372/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5372/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5372-:d:871446
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().