Machine Learning in Operating of Low Voltage Future Grid
Bartłomiej Mroczek and
Paweł Pijarski
Additional contact information
Bartłomiej Mroczek: Department of Power Engineering, Lublin University of Technology, 20-618 Lublin, Poland
Paweł Pijarski: Department of Power Engineering, Lublin University of Technology, 20-618 Lublin, Poland
Energies, 2022, vol. 15, issue 15, 1-30
Abstract:
The article is a continuation of the authors’ ongoing research related to power flow and voltage control in LV grids. It outlines how the Distribution System Operator (DSO) can use Machine Learning (ML) technology in a future grid. Based on supervised learning, a Selectively Coherent Model of Converter System Control for an LV grid (SCM_CSC) is proposed. This represents a fresh, new approach to combining off and on-line computing for DSOs, in line with the decarbonisation process. The main kernel of the model is a neural network developed from the initial prediction results generated by regression analysis. For selected PV system operation scenarios, the LV grid of the future dynamically controls the power flow using AC/DC converter circuits for Battery Energy Storage Systems (BESS). The objective function is to maintain the required voltage conditions for high PV generation in an LV grid line area and to minimise power flows to the MV grid. Based on the training and validation data prepared for artificial neural networks (ANN), a Mean Absolute Percentage Error (MAPE) of 0.15% BESS and 0.51–0.55% BESS 1 and BESS 2 were achieved, which represents a prediction error level of 170–300 VA in the specification of the BESS power control. The results are presented for the dynamic control of BESS 1 and BESS 2 using an ANN output and closed-loop PID control including a 2nd order filter. The research work represents a further step in the digital transformation of the energy sector.
Keywords: regression models; artificial neural networks; feedforward neural network; Battery Energy Storage System (BESS); LV grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5388/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5388/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5388-:d:871807
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().