A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps
Giacomo Russo and
Antonio Morandi
Additional contact information
Giacomo Russo: Department of Electrical, Electronic and Information Engineering, University of Bologna, 40135 Bologna, Italy
Antonio Morandi: Department of Electrical, Electronic and Information Engineering, University of Bologna, 40135 Bologna, Italy
Energies, 2022, vol. 15, issue 15, 1-18
Abstract:
High temperature superconductivity is emerging as a solution for lightweight, cost-effective and high-power wind generators. Current injection and maintainment/sustainment in the field winding are obtained by metal current leads which, due to persistent heat conduction and joule loss, are responsible for a large part of the total cryogenic heat load. Slip rings, which further reduce the overall performance and reliability of the system, are also required. In this paper we assess the viability of the HTS dynamo and the rectifier flux pumps for energizing the field coils of the EcoSwing 3.6 MW HTS wind generator. Both a “warm” solution, with the rectifier at room temperature, and a “cold” solution, in which the latter is integrated into the cryostat, are investigated with regard to the rectifier flux pump. A comparison with the actual, state-of-the-art, system of the EcoSwing machine is carried out in terms of the total required cooling power and the ability to charge the HTS field winding up to the rated current. It is found that the dynamo flux pump, beside avoiding the need of slip rings, allows the reduction in the required cooling by about 74% with respect to the conventional current-leads-based solution.
Keywords: HTS wind generators; flux pump; HTS dynamo; power supply for HTS magnets (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5392/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5392/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5392-:d:872008
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().