Robust Controller Considering Road Disturbances for a Vehicular Flywheel Battery System
Weiyu Zhang,
Xiaowei Gu and
Lindong Zhang
Additional contact information
Weiyu Zhang: School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
Xiaowei Gu: School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
Lindong Zhang: School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
Energies, 2022, vol. 15, issue 15, 1-17
Abstract:
At present, the stability study of the flywheel battery system under the influence of road conditions is only limited to the analysis of dynamic characteristics but also lacks effective controller considering road disturbances. In order to solve this defect and further improve the robust performance of vehicular flywheel battery systems under road disturbances, a robust controller considering interference of road surface roughness is proposed. Firstly, on the basis of a brief introduction to flywheel battery system structure, the influence degree of the flywheel by road condition is compared to find the key areas most affected by road disturbance factors. Then the nonlinear dynamic model of the axial suspension system is constructed, and the actual road surface roughness is regarded as the unmodeled dynamics of the external disturbance emphatically. Following, the established unknown system dynamics is approximated by radial basis function (RBF) neural network based on the minimum parameter learning method, the control input is generated by sliding-mode control law, and the weight adjustment of neural network is replaced by the designed adaptive law of parameter estimation. The effects of different levels of road surface roughness on the system are simulated, and the robustness of the proposed controller is verified based on the Lyapunov method. Finally, the experimental platform to simulate road disturbances is designed ingeniously. Experimental results show that the proposed controller can make the flywheel battery system have good robustness under different road conditions.
Keywords: flywheel battery system; magnetic suspension system; robust controller; road surface roughness (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5432/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5432/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5432-:d:873038
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().