EconPapers    
Economics at your fingertips  
 

A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System

Delin Wang () and Xiangshun Li
Additional contact information
Delin Wang: School of Automation, Wuhan University of technology, Wuhan 430070, China
Xiangshun Li: School of Automation, Wuhan University of technology, Wuhan 430070, China

Energies, 2022, vol. 15, issue 15, 1-18

Abstract: Realizing the dynamic redundancy of sensors is of great significance to ensure the energy saving and normal operation of the heating, ventilation, and air-conditioning (HVAC) system. Building a virtual sensor model is an effective method of redundancy and fault tolerance for hardware sensors. In this paper, a virtual sensor modeling method combining the maximum information coefficient (MIC) and the spatial–temporal attention long short-term memory (STA-LSTM) is proposed, which is named MIC-STALSTM, to achieve the dynamic and nonlinear modeling of the supply and return water temperature at both ends of the chiller. First, MIC can extract the influencing factors highly related to the target variables. Then, the extracted impact factors via MIC are used as the input variables of the STA-LSTM algorithm in order to construct an accurate virtual sensor model. The STA-LSTM algorithm not only makes full use of the LSTM algorithm’s advantages in handling historical data series information, but also achieves adaptive estimation of different input variable feature weights and different hidden layer temporal correlations through the attention mechanism. Finally, the effectiveness and feasibility of the proposed method are verified by establishing two virtual sensors for different temperature variables in the HVAC system.

Keywords: virtual sensor; HVAC; spatio-temporal; long short-term memory (LSTM); maximal information coefficient (MIC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5743/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5743/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5743-:d:882859

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5743-:d:882859