Partial Discharge (PD) Signal Detection and Isolation on High Voltage Equipment Using Improved Complete EEMD Method
Vu Cong Thuc and
Han Soo Lee ()
Additional contact information
Vu Cong Thuc: Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
Han Soo Lee: Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
Energies, 2022, vol. 15, issue 16, 1-17
Abstract:
Electricity has a crucial function in contemporary civilization. The power grid must be stable to ensure the efficiency and dependability of electrical equipment. This implies that the high-voltage equipment at the substation must be reliably operated. As a result, the appropriate and dependable use of systems to monitor the operating status of high-voltage electrical equipment has recently gained attention. Partial discharge (PD) analysis is one of the most promising solutions for monitoring and diagnosing potential problems in insulation systems. Noise is a major challenge in diagnosing and detecting defects when using this measurement. This study aims to denoise PD signals using a data decomposition method, improved complete ensemble empirical mode decomposition with adaptive noise algorithm, combined with statistical significance test to increase noise reduction efficiency and to derive and visualize the Hilbert spectrum of the input signal in time-frequency domain after filtering the noise. In the PD signal analysis, both artificial and experimental signals were used as input signals in the decomposition method. For these signals, this study has yielded significant improvement in the denoising and the PD detecting process indicated by statistical measures. Thus, the signal decomposition by using the proposed method is proven to be a useful tool for diagnosing the PD on high voltage equipment.
Keywords: empirical mode decomposition; EMD; intrinsic mode function; white noise; denoising and filtering process (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/5819/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/5819/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:5819-:d:885236
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().