EconPapers    
Economics at your fingertips  
 

Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design

Yiming Li, Fujun Sun, Wenbin Shi, Xingan Liu () and Tianlai Li ()
Additional contact information
Yiming Li: College of Engineering, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
Fujun Sun: College of Engineering, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
Wenbin Shi: National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
Xingan Liu: National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
Tianlai Li: National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China

Energies, 2022, vol. 15, issue 16, 1-18

Abstract: Numerical simulation is an effective tool for the thermal management of propulsion systems. Moreover, it contributes to the design and performance assessment of solar greenhouses for mushroom ventilation. Because the planning and design of the clustered solar greenhouse are still undiscovered, this study has developed a 3-D mathematical model suitable for a large-scale park of mushroom solar greenhouses based on computational fluid dynamics (CFD) theory. The effects of the orientation arrangement, horizontal spacing, vertical spacing of the cultivation racks, and the building distance between adjacent greenhouses on the ventilation performance were analyzed. The numerical simulation showed good agreement with the experimental measurement. The CFD results indicated that the reasonable layout of cultivation racks in mushroom solar greenhouses is a north-south arrangement. The horizontal spacing of cultivation racks has a significant influence on the wind speed and cooling rate, and the optimal spacing is 0.8 m. The overall height of the cultivation racks has little effect on the ventilation performance. Nevertheless, the vertical spacing between cultivation rack layers has a remarkable effect, and the optimal vertical spacing is 0.29 m. Reducing the building distance between the two adjacent greenhouses within a certain range helps increase the ventilation efficiency, leading to an increase in land utilization in the greenhouse park. The optimal building distance between the adjacent greenhouses is 10 m. The research results can provide theoretical guidance for improving the production quality and land utilization of mushroom facilities.

Keywords: ventilation; solar greenhouse; numerical simulation; system design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/5899/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/5899/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:5899-:d:888085

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5899-:d:888085