Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage
Elham Abohamzeh and
Georg Frey
Additional contact information
Elham Abohamzeh: Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany
Georg Frey: Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany
Energies, 2022, vol. 15, issue 16, 1-15
Abstract:
Zeolite 13X molecular sieve with high sorption capacity and significant sorption rate has been considered a promising candidate for seasonal heat storage. In this study, a code is developed to simulate the adsorption process between zeolite and water in all ranges of partial pressures, temperatures, and sorbate loadings. The results from the proposed code were compared with experiments and good agreement was observed. After validation, the developed model was used to study the effective parameters involved in the adsorption process of binder-free Zeolite 13X. A parametric study considering various temperatures and water content in the inflow air was conducted and the influence of different factors on the outlet temperature and adsorption enthalpy has been studied. This parametric study gives a good insight into the measures which can be taken for achieving the desired released energy or having the outlet temperature in the preferred range. The simulations have been conducted in a variety of temperature ranges provided during the desorption process, the humidity amount, and the mass flow rate of the incoming air. The relative influence of each parameter in the specified ranges is presented. The results have demonstrated the direct relationship of the partial pressure of water vapor and the desorption temperature with the adsorbed water amount and adsorption enthalpy while changing the mass flow rate mostly influences the discharging time.
Keywords: thermochemical heat storage; adsorption process; zeolite; energy storage density; computational fluid dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/5944/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/5944/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:5944-:d:890099
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().